Skip to main content
Log in

A review of heavy metal adsorption by marine algae

  • Chemistry
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Accumulation of heavy metals by algae had been studied extensively for biomonitoring or bioremediation purposes. Having the advantages of low cost raw material, big adsorbing capacity, no secondary pollution, etc., algae may be used to treat industrial water containing heavy metals. The adsorption processes were carried out in two steps: rapid physical adsorption first, and then slow chemical adsorption. pH is the major factor influencing the adsorption. The Freundlich equation fitted very well the adsorption isotherms. The uptake decreased with increasing ionic strength. The principal mechanism of metallic cation sequestration involves the formation of complexes between a metal ion and functional groups on the surface or inside the porous structure of the biological material. The carboxyl groups of alginate play a major role in the complexation. Different species of algae and the algae of the same species may have different adsorption capacity. Their selection affinity for heavy metals was the major criterion for the screening of a biologic adsorbent to be used in water treatment. The surface complex formation model (SCFM) can solve the equilibrium and kinetic problems in the biosorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aksu, Z., Kutsal, T., 1991. A bioseparation process for removing lead (II) ions from waste water by usingC.Valgans. J. Chem. Tech. Biotechnol. 52: 109–118.

    Article  Google Scholar 

  • Aksu, Z., Kutsal, T., Gun, S. et al., 1991. Investigation of biosorption of Cu(II), Ni(II) and Cr(II) ions to activated-sludge bacteria.Environ. Technol. 12 (10): 915–921.

    Google Scholar 

  • Chang, J. S., Hong, J., 1994. Biosorption of mercury by the inactivated cells ofpseudomonas-aeruginosa PU21 (RIP64).Biotechnol. Bioeng 44: 999–1006.

    Article  Google Scholar 

  • Chen, D., Lewandowski, Z., Roe, F. et al., 1993. Diffusivity of Cu2+ in Calcium Alginate Gel Beads.Biotechnol. Bioeng. 41: 755–760.

    Article  Google Scholar 

  • Chen, J., Tendeyong, F., Yiacoumi, S., 1997. Equilibrium and kinetic studies of copper ion uptake by calcium alginate.Environ. Sci. Technol. 31: 1433–1439.

    Article  Google Scholar 

  • Crist, R. H., Martin, J. R., Carr, D., et al., 1994. Interaction of metals and protons with algae. 4. Ion exchange vs adsorption models and a reassessment of Scatchard plots; ion-exchange rates and equilibria compared with calcium alginate.Environ. Sci. Technol. 28(11): 1859–1866.

    Article  Google Scholar 

  • Fehrmann, C., Pohl, P., 1993. Cadmium adsorption by the non-living biomass of microalgae grown in axenic mass culture.J. Appl. Phycol. 5: 555–562.

    Article  Google Scholar 

  • Fourest, E., Volesky, B., 1997. Alginate properties and heavy metal biosorption by marine algae.Applied Biochemistry and Biotechnology 67: 215–226.

    Article  Google Scholar 

  • Garnham, G. W., Godd, G. A., Gadd, G. M., 1992. Accumulation of cobalt, zinc and manganese by the estuarine green microalgaeChlorella Saline immobilized in alginate microbeads.Environ. Sci. Technol. 26: 1764–1770.

    Article  Google Scholar 

  • Ke, H. Y. D., Anderson, W. L., Moncrief, R. M., et al., 1994. Luminescence studies of metal ion-binding sites onDatura innoxia biomaterial.Environ. Sci. Technol. 28(4): 586–591.

    Article  Google Scholar 

  • Kuyucak, N., Volesky, B., 1989. The mechanism of gold biosorpion.Biorecovery 1: 219–235.

    Google Scholar 

  • Lin, Ronggen, 1998. Preliminary study on the adsorption of copper ion on the spiral algae.Marine Environmental Science,17(2): 8–11.

    Google Scholar 

  • Nakajima, A., Horikoshi, T., Sakaguchi, T., 1982. Recovery of uranium by immobilized microorganisms.Eur. J. Appl. Microbiol. Biotechnol. 16: 88–91.

    Article  Google Scholar 

  • Nourbakhsh, M., Sag, Y., Ozer, D. et al., 1994. A comparative study of various biosorbents for removal of Cr (VI) ions from industrial waste waters.Process Biochemistry 29: 1–5.

    Article  Google Scholar 

  • Schiewer, S., Volesky, B., 1996. Modeling of the proton-metal ion exchange in biosorption.Environ. Sci. Technol. 29(12): 3049–3058.

    Article  Google Scholar 

  • Schiewer, S., Volesky, B., 1996. Modeling multi-metal ion exchange in biosorption.Environ. Sci. Technol. 30 (10): 2921–2927.

    Article  Google Scholar 

  • Smidsrod, O., Haug, A., Whittington, S. G., 1972. The molecular basis for some physical properties of polyuronides.Acta Chem. Scand. 26: 2563–2566.

    Article  Google Scholar 

  • Tanaka, H., Matsumura, M., Veliky, I. A., 1984. Diffusion characteristics of substrates in Ca-Alginate gel beads.Biotechnol. Bioeng. 26: 53–58.

    Article  Google Scholar 

  • Trujillo, E. M., Jeffers, T. H., Ferguson, C. et al., 1991. Mathematically modelling the removal of heavy metals from wastewater using immobilized biomass.Environ Sci. Technol. 25(9): 1559–1565.

    Article  Google Scholar 

  • Tsezos, M., Volesky, B., 1981. Biosorption of uranium and thorium.Biotechnol. Bioeng. 23: 583–604.

    Article  Google Scholar 

  • Tsezos, M. et al., 1988. A batch reactor mass transfer kinetic model for immobilized biomass biosorption.Biotechnol. Bioeng. 32: 545–553.

    Article  Google Scholar 

  • Yiacoumi, S., Tien, C., 1995a. Modeling adsorption of metal ions from aqueous solutions I.J. Colloid Interface Sci. 175: 333–346.

    Article  Google Scholar 

  • Yiacoumi, S., Tien, C., 1995b. Modeling adsorption of metal ions from aqueous solutions II.J. Colloid Interface Sci. 175: 347–357.

    Article  Google Scholar 

  • Young, J. T., Boerio, F. J., 1993. Non-destructive characterization of polyimide/copper and polyimide/gold interphases using Surface-enhanced Raman Scattering and Reflection-Absorption Imfrared Spectroseopy.Surf. Interf. Anal. 20: 341–351.

    Article  Google Scholar 

  • Zhou, J. L., Banks, C. J., 1991. Removal of humic acid fractions byRhizopus arrhizus: uptake of kinetic studies.Environ. Technol. 12: 859–869.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Project 29677020 supported by the NSFC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin-fen, P., Rong-gen, L. & Li, M. A review of heavy metal adsorption by marine algae. Chin. J. Ocean. Limnol. 18, 260–264 (2000). https://doi.org/10.1007/BF02842673

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02842673

Key words

Navigation